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For a large scaled optimization based on response surface methods, an efficient quadratic
approximation method is presented in the context of the trust region model management
strategy. If the number of design variables is 5, the proposed method requires only 27+ 1 design
points for one approximation, which are a center point and two additional axial points within
a systematically adjusted trust region. These design points are used to uniquely determine the
main effect terms such as the linear and quadratic regression coefficients. A quasi-Newton
formula then uses these linear and quadratic coefficients to progressively update the two-factor
interaction effect terms as the sequential approximate optimization progresses. In order to show
the numerical performance of the proposed method, a typical unconstrained optimization
problem and two dynamic response optimization problems with multiple objective are solved.
Finally, their optimization results compared with those of the central composite designs (CCD)
or the over-determined D-optimality criterion show that the proposed method gives more
efficient results than others.
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1. Introduction

Recently, response surface approximations cou-
pled with numerical optimizers were widely stud-
ied to optimize multidisciplinary systems. This
approach may be effective for optimizing some
high' fidelity computational models such as the
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computational fluid dynamics (CFD), nonlinear
finite element analysis (FEA), and fatigue analy-
sis codes that do not support design sensitivity
information.

In many of these studies, the early works used
fixed or adaptive move limit strategies to insure
that design decisions were made based on lower
fidelity information (Wujek, et al, 1996;
Bloebaum, et al.,, 1994). However, they did not
guarantee the converged designs, even though
these move limit strategies led to improved
designs. Thus, fundamentally
employ the trust region model management strat-
egy (Dennis and Torczon, 1996; Alexandrov,
1996) because it algorithmically provides the

recent works
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convergence of the approximate optimization
strategies. The trust region model management
strategies adaptively restrict design moves within
trust regions, where the lower fidelity approxi-
mate model produces information that agrees
with the high fidelity analysis model within an
acceptable tolerance to error. It still however
requires a large number of design points to con-
struct a response surface for a function that
involves # variables, even though the trust region
model management strategy provides a mathemat-
ical foundation on using the approximate optim-
ization strategy.

In order to overcome these difficulties, this
study proposes an efficient quadratic response
surface approximation method. The proposed
method has the following two merits. Firstly, it
requires only 2%+ 1 points for determining the
regression coefficients of linear and quadratic
terms in each approximation. However, it can
mathematically determine the regression coeffi-
cients of two-factor interaction terms using the
normalized quasi-Newton formula. Also, this
progressive quadratic approximation algorith-
mically converges from the global quadratic
approximation to the local quadratic approxima-
tion in the context of the trust region model
management strategy. Secondly, it does not
require the additional CPU time to explicitly
construct a quadratic approximate model. This is
because it uniquely determines all the regression
coefficients for linear and quadratic terms and
algorithmically updates the remained regression
coefficients for the two-factor interaction terms
using the uniquely determined terms.

Section 2 reviews the trust region algorithm
and the sequential approximate optimizations
with the trust region model management strategy.
Section 3 fully describes the basic concept and
mathematical foundation of the progressive qua-
dratic response surface approximation (PQRSA)
method. Section 4 explains the computational
procedure of the sequential approximate optim-
ization (SAO) with the PQRSA in the context of
the trust region model management strategy. Sec-
tion 5 shows the numerical performance by solv-
‘ing typical unconstrained optimization problems

and comparing the results with those of other
trust region methods that are combined with
CCD or over-determined D-optimality designs
(Carpenter, 1993). Section 6 presents the conclud-
ing remarks of this study.

2. Review of Trust Region Based
Approximate Optimization

We first review the trust region algorithm that
will be used to algorithmically manage the
approximate model in the sequential approximate
optimization process described in this study.

2.1 Basic concept of trust region algorithm

The trust region algorithm (Fletcher, 1987)
approximates the quadratic function g(&),
obtained by truncating the Taylor series for f(x,
+ &%) which does not have a unique minimum
and does not define Newton’s method. In order to
avoid this difficulty, it is assumed that some
neighborhood [“={8, : |8«|<h*} of x, is
defined where g (&%) agrees with f(x,+8.) in
some sense. Then it would be appropriate to
choose x.;=x,+ 8« where the correction &,

minimizes g (8,) =V (x¢) 8-+ 2-81Gubn (1)
subject to |8l < A (2)

This method may be called a Trust Region
Algorithm. In order to prevent undue restriction
of the step, ;* should be as large as possible to a
certain measure of agreement existing between g
(8:) and #(x,+8.). This can be quantified by
defining the actual reduction in f on the ™ step
as

Aszf(Xk) —f(Xk+ Sx) (3)

and the corresponding predicted reduction as
4 =q0) —q (8 =f(x) —q (). (4
Then the ratio
re=Af*/dq* (%)

measures the accuracy to which ¢(8,) approxi-
mates f(x,+ &), it the sense that the closer », is
to unity, the better the agreement is. Most of the
typical trust region algorithms adaptively reduce
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or increase j4* to maintain a certain degree of
agreement as measured by .. This is one reason
that makes the trust region algorithm to be one of
the best model management strategies in approxi-
mate optimization.

Although the Hessian G, of Eq. (1) is replaced
by an approximate Hessian B, the global conver-
gence of the trust region algorithm if B, is bound-
ed was proven by Fletcher (1972) and Powell
(1975). We believe that this is another reason for
the trust region concept to be newly employed for
managing the approximate model in the SAQO.

2.2 Sequential approximate optimization
with trust region model management
strategy

Since Dennis and Torczon (1996) introduced
the trust region concept to manage the approxima-
tion model in optimization, most of the recent
works in this area fundamentally use the trust
region model management strategy (Alexandrov,
1996; Rodriguez, et al., 1988; Nelson and
Papalambros, 1999). It provides a mathematical
foundation upon which the use of approximate
optimization strategies can continue to be devel-
oped, because it guarantees the converged design
in the approximate
(Dennis and Torczon, 1996). Also, it can easily
be expanded to manage the approximate models
in the constrained optimization process (Ro-
driguez, et al., 1988; Celis, et al., 1984), as the
trust region method can be fundamentally used as
a sub-optimizer for the augmented Lagrange
multiplier method (Rodriguez, et al., 1988) and
the sequential quadratic programming method
(Celis, et al., 1984).

Although the trust region model management
strategy provides a mathematical foundation on
using the approximate optimization strategy, it is
noted that the following two difficulties still
remain when using response surface models for a
large scaled system design. Firstly, it requires a
large number of design points to construct a

sequential optimization

response surface for a function that involves
variables. Secondly, the use of response surface
models cannot reduce the overall computational
expense in the approximate optimization process.

This is because the computational cost is incurred
in the creation of the response surface models
rather than during the optimization process
(Haim, et al., 1999).

2.3 Review of experimental designs

In order to explain the relations between the
number of design points and the response surface
model, we consider constructing a second-order
approximate model. It requires at least 3 design
points for each factor so that the regression coeffi-
cients in the model can be estimated. This samples
the corner points as well as the midpoints of the
line connecting the corners of a hypercube. Thus
3”7 full factorial experiments may be necessary.
Although this design works well for a small value
of # such as 2 or 3, it is difficult to use the full
factorial designs (FFD) for the design consider-
ing a large number of design parameters.

Box and Wilson first introduced the central
composite designs (CCD) that enabled the infor-
mation surface, described by the sampled designs,
to be rotatable (Box and Draper, 1987). This
consists of a two-level factorial, the corner points
of a hypercube, plus the center point and star
points arranged along the design variable axes
and symmetrically positioned with respect to the
factorial hypercube. This criterion uses a total of
274+ 2x+1 points. Although the CCD needs a
lower number of points than the FFD, the num-
ber of points for the CCD becomes unacceptable
even for a problem with 10 design variables.

In order to reduce the number of experimental
design points, the D-optimality criterion has been
used (Box and Draper, 1971), as this could use
the experimental design points equal to the num-
ber of regression coefficients in the approximate
model fitted. However, it is reported that this
saturated D-optimal design made poor converge
of the region of interest (Carpenter, 1993). Thus
the 20 % to 50 % over-determined D-optimal
designs for an approximation model building is
widely used because it leaves a good choice for
response surface model building for the deter-
ministic computational experiments (Unal, et al.,
1998). Although this over-determined D-
optimality criterion can use a lower number of
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points than the CCD, it still requires 1.2~1.5
times the number of regression coefficients. Con-
sidering only a second-order model, the number
of regression coefficients is 14+2n+n(n—1)/2.

3. Progressive Quadratic Response
Surface Approximations

The progressive quadratic response surface
approximations (PQRSA) fundamentally use a
quasi-Newton formula. However, it is completely
different from a typical trust region algorithm
with the quasi~Newton Hessian updated formula.
In other words, the conventional quasi-Newton
Hessian updated formula uses only local informa-
tion between consecutive iterations throughout
the optimization process.

The PQRSA method is composed of the follow-
ing two processes. The first one is the initial
design sampling process, because a quasi-Newton
formula basically needs the gradient and design
change information between two design points.
The second -one is the quadratic approximation
process using the normalized quasi-Newton for-
mula.

3.1 Design sampling process during the first
two iterations

Before we explain the proposed PQRSA, we

first describe the sampling design points in the

first two steps. At the initial step, the two points
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(a) At the I* iteration

are sampled along the axes of each design vari-
able and the center point is added as shown in
Fig.. 1 (a). Then the exact function values are
evaluated for the selected 2x+1 points. A
response surface model can be uniquely devel-
oped using these 2#+1 points because the qua-
dratic terms for the approximate model are only
diagonal components. This approximate model is
optimized within [™. Let the new design be x, as
shown in Fig. | (b). Now evaluate the exact
function value for x; and check the approxima-
tion accuracy using Eq. (5) and adjust the new
trust region [ for the 27 iteration. At the 27¢
iteration, 25 points are newly sampled along the
axes of each design variable centered at x,. Fig. 1
(b) shows this sampling. Then the quadratic
model is constructed similar to the-1% step. It is
noted that this simplified quadratic model is not
directly used in the 2" optimization iteration.
That is, the PQRSA is applied from the 2 itera-
tion. This is explained in the next section.

3.2 Progressive quadratic response surface
approximation using normalized quasi
-newton formula

Let g, and D, be the first-order and the second

~order terms of the ™ quadratic approximation
model approximated by 2%+ 1 points. Also, Let
8r=Xy—X-1 and y,=g,—g,_;. The approxi-
mate Hessian can then be constructed as Eq. (6)
by a quasi-Newton formula (the well-known

(b) At the 2% iteration

Fig. 1 Design points sampled at the first two iterations
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BFGS formula is used in this study)

(Be-18x) (Be-184) 7
8}3‘Bk—13k
where B, denotes the A" approximate Hessian

matrix and Be=D,.

Although the original second-order term (I,)
has no off-diagonal coefficients at x,, it is noted
that a quasi-Newton formula of Eq. (6) mathe-
matically gives the off-diagonal terms. However,
D. gives more accurate information than the
diagonal terms of B,, especially for small %, We
believe that this characteristic will be gradually
dominated as the optimization process is progres-
sed. Thus, in order to directly use D, as the
diagonal terms of B,, the updated Hessian B, is
normalized as

G.=SIB:S.» M

where the scaling matrix §, has only the diagonal
terms. The ;*® component of §,, 8¥ is conceptual-
ly J/[DZ[/VIBF. Also, in the normalized Hessian
G the signs of the diagonal terms are reset as
those of D,. Unlike mathematical problems, the
practical problems can be basically non-convex
functional. In other words, some components of
D, have positive values while others have nega-
tive values making the convergence of the approx-
imate optimization difficult. Thus, if some compo-
nents of D, have opposite signed values, the
corresponding off-diagonal terms of G, are reset
as zero values. This represents that saddle points
exist between the corresponding design variables.
In other words, the approximated function can be
separable between them. It is noted that this
treatment enables the proposed approximation

T
+I5E (6

B/c:Bk—I Ylfak

method to reduce the error for the approximating
non-convex functional, although only quadratic
terms are used in approximation.

Suppose that this approximation is combined
with one of the trust region model management
strategies. The adaptively adjusted trust regions
increase the accuracy of matrix Dy, since D, and
g« can be equal to those of central difference
approximation in small or well-established trust
regions. This represents that the normalized
matrix G, can be nearly equal to the exact
Hessian matrix for x,. Finally, the normalized

Hessian matrix G, modify Eq. (6) as

. _ (quaﬁ (ék—lak) T 0 YkYZ
Be= G-t 51Gia8r  Tylse ®

We call Eq. (8} a normalized quasi- Newton
Jormula. In section 4, we will fully describe the
computational procedure of a sequential approxi-
mate optimization method combined with the
PQRSA.

3.3 Hyper-cubic typed trust

effective treating side constraints

As the trust region algorithm is fundamentally
developed only to solve unconstrained optimiza-
tion problems without side constraints, the origi-
nal hyper-spherical type trust region, shown in
Fig. 1, may not be appropriate for engineering
optimization problems. Thus we recommend that
one uses a hyper-cubic type trust region, shown
Fig. 2, since most of the engineering optimization
problems have hyper-cubic typed side con-
straints.

Now we turn to explain the effectiveness of the
hyper-cubic type trust region. If an iterative
design (including the given initial design) is
inactive to all the side constraints shown in Fig.
2 (a), both trust regions can successfully repre-
sent a sub-region of design space. However, if an
iterative design is active to some side constraints,
shown in Fig. 2 (b), the hyper-cubic type trust
region easily represents a sub-region, including

region for

the iterative design, within side constraints but the
hyper-spherical type trust region does not.

Also, suppose that the optimum design is active
to some side constraints. Then the hyper-spheri-
cal type trust region should be infinitely small in
order to inciude the optimum point within it
However, the hyper-cubic type trust region can
easily include the optimum point without any
difficulties.

4. Computational Procedure of SAO
Combined with PQRSA

4.1 Computational procedure
This section presents the computational proce-
dure of a Sequential Approximate Optimization
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Fig. 2 Design point sampling strategy according to the activeness of side constraints

(SAO) method, which uses a trust region model
management strategy for the effective managing of
the progressively approximated quadratic models.
The basic computational procedure is as follows:

Step 0. The initial trust region is assumed 30%
~50% for design space that includes the initial
design. Set k=1. If one does not give the initial
design, select the initial 2% +1 sampling points
shown in Fig. 1. Otherwise, select the initial
designs shown in Fig. 2.

Step 1. Construct a quadratic mode! using a
quadratic polynomial approximation along each
design variable axes. Let their coefficients be g,
and D, for linear and quadratic terms. If =1
Then go to Step 3. Otherwise, set y,=g,—g/,_1.

Step 2. Evaluate the coefficient matrix of the
second-order term (B,) using Eq. (8) and con-
struct (3, by normalizing STB.S,.

Step 3. Minimize ¢ (&%) =g£8k+%3;f(~}k8k

subject t0 || &kl < e Let 87 be the approximate
optimum. For effective solving of this sub-prob-
lem, more detailed discussion is presented in
section 4.2.

Step 4. Evaluate the actual and the predicted
reductions such as 47* and Jg* using Eq. (3)
and Eq. (4). Then check the reduction ratio ;. If
7e<0.25 set hp=|8kllw/4, if 7,>0.75 and || §4f|=
hs then set p,=2h,, otherwise set j,=j,. If »,

>0, then update x,=x,+ & and go to Step 5
with t=k+1. Otherwise, go to Step 3 with the
reduced trust region.

Step 5. If Af*<e, AfF/f*<e or |gi<e
then stop. Otherwise, select new 24 design points
around x,;, within the new trust region J'*+!
and go to Step 1.

The constants 0.25, 0.75, etc. have been used in
many trust region algorithms. They are also
known to be quite insensitive to their change.
Thus the values are not changed in this study.

4.2 Numerical considerations

Although the basic procedure for the proposed
approximate optimization is described in section
4.1, the following four guidelines are needed to
use the above computational procedure in solving
the approximate optimization problems.

First, in order to solve the approximate optim-
ization problem of Step 3, at least two optimiza-
tion algorithms are recomnmended. For G, being
positive definite, a Newton’s method (Fletcher,
1987) is used in this study. However, for (:‘,k being
non-positive definite, a global optimization al-
gorithm is used. A Simulated Annealing (SA)
method (Corana, et al., 1987) is employed for the
latter.

Second, for multi-criteria optimization, it is
recommended that each objective function be
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respectively approximated. Then, in order to
transform the multi-objective function into a
scalar function, the max-value typed preference
function (Osyzka, 1984) is used as

B (&) =l_gg,§?fm{w1-ii_(8?k}——£} o

AS%?(m{Wifi(ak)} for ié'ﬂh‘:l 9)

where y; is the ;™ weighting coefficient, and f*
the ideal value for the ;** objective. Also, the ;™
approximated objective function is defined as

Fo(80 =f:(x0) + (gD "8+ 5-80Gi8.  (10)

Then, Eq. (9) is used as g(&,) at Step 3 in the
algorithm above. In addition, the actual and
predicted reductions are evaluated by the
proposed preference function.

Third, for considering constrained and approxi-
mate optimization problems, it is recommended
that the objective and constraint functions be
respectively approximated. Then, any constrained
optimization algorithm is used to solve this
approximate optimization problem. However, this
study uses the [, exact penalty function (Flet-
cher, 1972) to evaluate the reduction ratio for the
constrained optimization problem at Step 4 in
the above computational procedure. This is
because this functional is exact in the sense that
local minimums of the functional are equivalent
to local minimums of the original problem to a
large extent. The [, exact penalty function is
represented as:

Li(80 =7 (80 +7 g max(0, (80} (11

where f and g, denote the objective function and
the 7* inequality constraint function that are
approximated. This approximated [,; exact pen-
alty function of Eq. (11) is directly solved by the
SA algorithm. This is in order to solve the con-
strained approximate optimization problems.

Finally, for evaluating the reduction ratio y, of
Step 4 in the above computational procedure,
using the following modified formula is recom-
mended in order to avoid additionally introduc-
ing the heuristic limitation of || &) for 7, >1.

k k

Suppose that 4f%/dg*=10, Eq. (5) gives »,=10
but Eq. (12) gives 7, =min{10, 0.1}=0.1. In other
words, according to Step 4 in the computational
procedure of Sec. 4.1, the original formula may
increase or maintain the size of trust region
because 7, >0.75. However, the modified formula
reduces the trust region because 7,<0.25. We
believe that this modified formula is a better
measure to the approximation accuracy because
the closer », being to unity represents a better
agreement between f and g.

5. Numerical Studies

In order to show the numerical performance of
the proposed approximation method, a sequential
approximate optimizer (SAO) is developed based
on the computational procedures described in
Sect. 4. This fundamentally employs a trust region
model management strategy and has the option of
three approximation methods such as the
PQRSA, the CCD and the over-determined D-
optimality criterion. The employed convergence
criteria are that: 1) the relative or absolute devia-
tion of cost functions between consecutive SAO
iterations, and 2) the maximum violation amount
of constraints, should be less than g, and g,
respectively.

In this section, two typed sample problems are
studied. One is an unconstrained mathematical
optimization problem. Another is a multi-objec-
tive dynamic response optimization problem from
the reference (Haug and Arora, 1979).

5.1 Unconstrained mathematical optimiza-
tion problems

This sample problem is selected to compare the

numerical performance of the three approxima-

tion methods according to the increasing number

of design variables. The problem is to minimize

FO =3 Crear—ad) + (1= 20)?

where the initial design is given as x, = — 1.2, x4,
=1.0 for k=1, 3, 5, ---, #—1. We solve these
sample problems for =2, 6, 10, 15, 30 and 50.
Table 1 lists the number of design points required
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Table 1 The number of design points required for
the three approximation methods to con-
struct a quadratic response surface model

Table 2 lteration history for the unconstrained
mathematical optimization problem

(a) In case of having 2 design variables

n PQRSA D-Optimality* CCDh
2 5 9 9

6 13 42 77
10 21 99 1045
15 31 204 32799
30 61 744 -
50 101 2837 -

* The 50% Over-determined D-Optimality Criterion is
used.

for the three approximation methods. As can be
seen, it seems that the CCD are not recommended
for a larger number (3 >6), and the over-deter-
mined D-Optimality criterion not for %>15 as
well, since they require too many numbers of
design points. The convergence tolerance g; is
specified as [x10~® because it is an uncon-
strained problem. The optimization results are
listed in Table 2. In Table 2, Iteration represents
the number of approximations, and the Total
NFE denotes the cumulative number of function
evaluations during SAO. In this study, Total
NFE represents total number of sampling points
plus additional points to check convergence dur-
ing the optimization process. The Total NFE is
counted by lteration* (2n+1) for the PQRSA,
Iteration* (1+1.5* (1 4+2n+ n(n—1)/2)) for the
50 % over determined D-optimality criterion, and
Iteration* (14+2"+2xn+1) for the CCD. It is
noted that the D-optimality criterion and the
CCD require one additional evaluation, because
the approximate optimum may not be included in
the next design set.

Table 2 lists four iteration histories of the cost
value for the three approximation methods. The
CCD and the 50 % over determined D-optimality
criterion are not applied for % >6 and for » > 15,
respectively, because it requires too many design
points. All the tested results show that the
PQRSA method is more efficient than the other
two approximation methods, although the num-
ber of SAQ is greater than the other methods. Fig.
3 graphically shows the Total NFE of three
approximation methods according to the number
of design variables. It is especially noted that the

[teration PQRSA D-optimality CcCD
1 3.7055 2.8901 2.8901
2 5.1145* 1.0000 1.4416
3 2.1043 0.2876 0.5489
4 1.2254 0.6759* 0.1086
5 0.1609 0.0704 0.0088
6 0.1274 0.0211 0.0010
7 0.0654 0.0179
8 0.0138 0.0039
9 0.0032 0.0015
10 0.0012

Total NFE 51 91 61

* The SAO is failed to improve design. Thus, this design
is automatically rejected and a new approximation is
used within the reduced trust region.

(b) In case of having 6 design variables

Iteration PQRSA D-optimailty CCD
1 9.4930 11.2904 11.1763
2 13.8118* 2.9348 5.5606
3 48713 219377+ 2.3966
4 2.7191 0.7227 0.3721
5 0.9933 0.2044 0.1130
6 0.6142 0.0825 0.0541
7 0.1459 0.0242 0.0269
8 0.0610 0.0064 0.0096
9 0.0492 0.0016 0.0012
10 0.0181
11 0.0047
12 0.0012

Total NFE 167 388 703

* The SAO is failed to improve design. Thus, this design
is automatically rejected and a new approximation is
used within the reduced trust region.

(c) In case of having 10 and 15 design variables

10 design variable 15 design variables

Iteration PQRSA l?n‘;f’t‘y‘ PQRSA ‘?n‘;ﬁ;

T 149794 274430 193918 6.6761
2 18.1220* 22691  258837*  6.676
3 77918 34559 58421  5.7377°
4 39710 09480 58315 04853
5 13988 0.1376 42636  0.1323
6 12832 07361* 27152 00535
7 09660 00518 16224 00108
8 07224 00453 10172 0.0075
9 0.5104 00028 03544  0.0007
10 0.3425 00023 0.1409
1 0.2198 0.0461
12 0.1011 0.0181
13 0.0313 0.0087
14 0.0121 0.0040
15 0.0038 0.0017
16 0.0012

Total NFE 337 1001 466 1346

* The SAO is failed to improve design. Thus, this design
is automatically rejected and a new approximation is
used within the reduced trust region.
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Fig. 3 Comparison of the total function evaluations
for three approximation methods according
to the number of design variables

Total NFE of the PQRSA for »=>50 requires
much less function evaluations than those of the
50 % over determined D-optimality criterion for
n=15.

5.2 Two multi-objective dynamic response
optimization problems

These problems fundamentally have
dependent constraints and multi-objectives that
consist of several max-value functions over time
intervals. Thus, we remove their time depen-
dencies by replacing all the time dependent con-
straints with max-value functions respectively
(Grandhi, et al., 1986). For direct comparison of
the optimization results with those of Haug and

Arora, the preference function is used as max
i=l-,m

time

{7:(8:)}. The convergence tolerances g, and &,
are specified as 1 x 1072 and 1 x 107%, respectively.

5.2.1 A linear dynamic absorber design with
five objective functions

The objective is to find the damping and spring
constants of a dynamic absorber shown in Fig. 4.
This minimizes the peak transient dynamic
responses of the main mass for a given set of
excitation frequency ratios, subject to constraints
on transient and steady state responses to a given
five forcing functions. The starting values of
design variables are (1.0, 0.2) and the correspond-
ing initial cost values are (8.65, 8.07, 3.20, 5.21, 9.
41). Haug and Arora (1979) obtained the opti-

Table 3 Optimization results of a two DOF linear

dynamic absorber design with five objec-
tive functions

Iteration =~ PQRSA D-optimality CcCD
| 5.5695 4.5904 5.2053
2 5.7665* 4.9940* 4.3858
3 4.3321 4.2953 4.8727+*
4 4.2993 4.2949 4.2948
5 4.2995* 4.2947
6 4.2980
Total NFE 31 41 51

* The SAO is failed to improve design. Thus, this design
is automatically rejected and a new approximation is
used within the reduced trust region.

AT
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Fig. 4 Linear vibration isolator

.mum designs (0.921, 0.154) and corresponding

maximum cost values (4.291) after 22 iterations.
They evaluated function and gradient evaluation
per iteration. The iteration histories of the cost
value are listed side by side for the three approxi-
mation methods in Table 3.

As shown in Table 3, all the approximation
methods successfully converged. In this problem,
the PQRSA require more iterations than the other
two methods like those of the unconstrained
optimization problem. However, in the PQRSA,
more iteration does not simply represent increas-
ing additional CPU time. This is because it does
not require additional CPU time to construct the
approximate model, unlike the CCD or the D
-optimality criterion. Figure 5 shows the conver-
gence history of the PQRSA method, which does
not include the rejected design during SAO.
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Fig. 5 Convergence history of the PQRSA for the
linear vibration isolator excited by five forc-
ing functions

Fig. 6 Five-degree-of-freedom Vehicle system

522 A vehicle suspension system design
with two objective functions

The five degree-of-freedom vehicle suspension
system of Fig. 6 is designed to minimize the
extreme acceleration of the driver’s seat for a
constant vehicle speed and the two road condi-
tions. The motion of the vehicle is constrained so
that the relative displacements between the chassis
and the driver’s seat, the chassis and the front and
rear wheels, and the road surface and front and
rear wheels, are within given limits. Spring con-
stants and damping coefficients in the system are
chosen as design parameters. The profiles 2 and 3
of road conditions of Fig. 7 are used for determin-
ing the displacement functions. It is a combina-
tion of two sinusoidal curves with constant half-
wave lengths. The starting values of design vari-

Table 4 Optimization results of a vice DOF vehicle
suspension system with two objectives

Iteration PQRSA  D-optimality CCD
1 214.7961 137.4375 142.4214
2 130.3887 144.9298* 142.7022*
3 134.5938* 131.2935 128.6760
4 127.4947 129.5541 130.0800*
5 130.5330* 129.0609 129.5109
6 126.7498 127.6085 127.8777
7 157.2262* 126.9647 127.9362*
8 126.3163 126.5974 127.7061
9 126.2330
Total NFE 118 345 625

* The SAOQ is failed to improve design. Thus, this design
is automatically rejected and a new approximation is
used within the reduced trust region.
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Fig. 7 Two Road surface profiles

ables are (100, 300, 300, 10, 25, 25) and the
corresponding initial cost values are (198.6, 142.
4). Haug and Arora (1979) obtained the opti-
mum designs (50, 200, 200, 8.93, 45.92, 37.81) and
corresponding maximum cost value (125.5) after
40 iterations. The iteration histories of the cost
value are listed side by side for the three approxi-
mation methods in Table 4.

Table 4 shows that all the three methods are
successfully converged. As can be seen, the
PQRSA gives more efficient result than the other
two methods. Particularly for the small design,
such as the above linear dynamic absorber design
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Fig. 8 Convergence history of the PQRSA for the

vehicle suspension system excited by profiles
2 and 3

problem, the Total NFE seems to be competitive
in the tested three methods. However, for the
medium scaled design such as this example, the
Total NFE of the PQRSA is found to be only
33 % of those of the D-optimality criterion and
19 % of those with the CCD. These two iteration
histories for constrained multi-objective optim-
ization problems show the similar trend to those
shown in Fig. 3 for unconstrained optimization
problems. That is, the PQRSA gives more effi-
cient results than the other two approximation
methods for larger design problems shown in Fig.
3.

Figure 8 shows the convergence history of the
PQRSA, which does not include designs rejected
during SAO. Two cost functions are consistently
minimized and have the same magnitudes at the
final design.

6. Concluding Remarks

An effective quadratic response surface approx-
imation method has been proposed in this study.
The proposed method does not require the addi-
tional CPU time to explicitly construct an
approximate model. This approximation method
used only 2+1 design points for one approxi-
mate optimization, and uniquely determined the
main effect terms such as linear and quadratic
regression coefficients. The two-interaction terms
were then progressively updated using main effect
terms between consecutive iterations. To do this,

the study employed a normalized quasi-Newton
update formula. This whole procedure was called
a progressive quadratic response surface approxi-
(PQRSA) method. To
computational procedures of the PQRSA in the
context of the trust region model management
strategy, a SAO program having an option of
three approximation methods, such as the
PQRSA, the 50 % over determined D-optimality
criterion and the CCD, was developed and
applied to a typical mathematical unconstrained
optimization problem consisting of five design
cases and two multi-objective dynamic response

mation implement

optimization problems.

For all design cases, the proposed PQRSA gave
more efficient results than the other two approxi-
mation methods. In the unconstrained mathemati-
cal optimization problems, it was especially noted
that the Total NFE of PQRSA for the case having
#=>50 was much less than those of the 50 % over
—determined D-optimality criterion for #=15.
Also, for multi-objective dynamic response
optimization problems, the proposed PQRSA
gave more efficient results than the other two
approximation methods. Particularly for the
medium scaled design such as this example, the
Total NFE of the PQRSA is found to be only
33 % of those of the D-optimality criterion and
19 % of those with the CCD. These results showed
that the PQRSA can be effective for optimizing
large-scale design problems combined with the
CFD, nonlinear FEA, and fatigue analysis codes
that do not support design sensitivity information.

The performance of the proposed PQRSA was
evaluated by comparing it’s optimization results
for three example problems with those of two
approximation methods combined with two typi-
cal experimental designs. The comparison clearly
shows the great superiority of the proposed
approximation method over those of conventional
approaches, which verifies that the PQRSA is an
effective and efficient quadratic response surface
modeling.
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